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compagnie d'assurance-vie pour son fonds euro. Dans un environnement persistant de taux bas, les conditions de 
fonctionnement des activités d'assurance-vie sont modifiées. Pour continuer à offrir une rémunération attractive aux 
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maturité du marché de l'assurance-vie en France crée des conditions potentielles de retraits massifs. En raison de ces 
multiples expositions aux risques, nous appliquons des modèles de ruine à ce problème global. Nous déterminons la 
formulation mathématique des deux premiers moments de la valeur d'une compagnie d'assurance-vie, en fonction de son 
activité et de sa stratégie d'investissement. Nous résolvons numériquement le problème d'optimisation sous contraintes. 
Nos résultats permettent de mieux analyser les problèmes de gestion de portefeuille des compagnies. Les stratégies 
d'allocation d'actifs optimales peuvent varier considérablement pour des changements minimes de certains paramètres 
de l'activité des assureurs : la probabilité d'insolvabilité, le niveau de capital garanti et le taux de prime. 
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insurance market creates potential conditions for massive withdrawals. We address those risk exposures by applying ruin 
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Portfolio optimization of euro-denominated

funds in French life insurance

Runsheng Gu ∗,† Lioudmila Vostrikova ‡ Bruno Séjourné †

Abstract

In this paper, we study a portfolio optimization problem related to the asset management
of life insurance companies. In a persistent low-interest-rate environment, the conditions
under which life insurance business operates are modified. To continue to offer a favorable
return to the insured, life insurers should allocate more risky assets to their portfolio. But,
doing so, they would be exposed to not being able to guarantee the capital. Besides, the ma-
turity of the life insurance market creates potential conditions for massive withdrawals. We
address those risk exposures by applying ruin models. We obtain formulae for the first two
moments of the value of a life insurance company, depending on its activity and investment
strategy. We show that the optimal asset allocation strategies can differ considerably for
small changes in certain parameters of the insurer’s business: the probability of insolvency,
the level of guaranteed capital, and the premium rate.

Keywords: Life insurance; Portfolio optimization; Low interest rates; Ruin theory
JEL Classification: G22; C61; G11

1. Introduction

The French life insurance market is one of the largest in Europe. The outstanding life
insurance contracts amounted to EUR 1.7 trillion at the end of December 2018. In the life
insurance business, euro-denominated funds have been the cornerstone of any life insurance
contracts in France since the mid-1980s, and they still represent 80% of the outstanding
managed assets in life insurance. The capital guarantee and tax advantages provided by
the life insurance product in euro-denominated funds are massively sought by households
([Cazenave-lacrouts et al., 2018]). Life insurers used to derive most of their financial income
from the investment of premiums received from their policyholders in fixed-rate bonds.
Besides these attractive features, the success of euro-denominated funds was due to the
relative high-interest rates mainly during 1980-2010, with highly weighted default-risk-free
bonds in the portfolios of life insurers.

However, the economic model of euro-denominated life insurance has sometimes experi-
enced a real upheaval because of
· Very low, sometimes negative, interest rates: For example, the French ten-year bond yield
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Vostrikova), Bruno.Sejourne@univ-angers.fr (Bruno Séjourné).
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decreased to 1.00 % by 2014 and further dropped to -0.20 % by 2019.
· A rise in outflows and a decrease in inflows: not only because of the declining returns but
also due to the age pyramid changes.

Fig 1: France 10-year Government Bonds Yield, and Performance of Life Insurance Products
in the euro-denominated funds, 1994-2018.

Source: FFA, ACPR, Bloomberg

As shown in Figure 1, since 1990, there is a general downward trend in the real return of
euro-denominated bonds from 7.00% to 5.00% in 2000 and 1.78% in 2018, which means only
1.50% net of social contributions1. However, as life insurers invest the bulk of insurance
savings in long-term government bonds, such a decrease should not come as a surprise.
Indeed, the European central bank’s monetary policy decisions addressing the consequences
of the 2007-2008 financial crises (both quantitative easing and the cut of the reference rates)
caused a drop in the 10-year bond yields, too. This trend had already been observed after
introducing the single currency, which stabilized the nominal interest rates at low levels
across the Eurozone. As the inflation rate has been stable over the last two decades, around
the ECB target of 2.00%, the convergence in nominal interest rates engendered a drop in
real ones ([Franks et al., 2018]). Under these circumstances, the return of euro-denominated
funds also plunged whenever new assets had to be added into the portfolio for replacing
the maturing ones or placing the net inflows. In 2018, 10-year French government bonds
yielded less than 1.00%. Moreover, when inflation is considered, the real return rates on
euro-denominated funds decrease more rapidly in the past three years. If this level of bond
yields persist several years more, the returns on euro-denominated funds will approach zero.

In our contention, a good benchmark to use as “secure savings” for making an informed
investment choice is the Passbook A (Livret A in French), which is the most popular fi-

1The interests generated by single life insurance contracts are subject to social security contributions
every year. The rate of deductions applicable is that in force on the date of acquisition of the interest. That
was 15.50% in 2018. They are directly deducted by the insurer who transfers them to the tax authorities
when the interest is entered into the contract.
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nancial product in France. This secure and liquid savings account has a regulated ceiling
deposit amount to 22,500 euros. It bears a guaranteed interest rate, which has been de-
creased from 0.75% in 2016 to 0.50% nowadays and is tax-exempt. Such features reveal the
fierce competition that the life insurers must now face when considering the annual return.
There is no limit for the amount invested in the life insurance products, and as far as life
insurance has tax advantages under the French inheritance law, the French citizens still
perceive the euro-denominated funds as good investments. However, the spread between
the returns of those two products is diminishing and, according to the trend, is going to
approach zero in the foreseeable future. Moreover, the reduction of the return on the euro-
denominated funds creates a real risk of outflows to the companies since, at the same time,
most contracts have become fiscally free of reinvestment. Such is the case after an 8 year
holding period.

To continue offering favorable returns to their clients while guaranteeing their invested
capital, the life insurance companies first decided to modify gradualy the structure of their
assets in line with the emerging economic model of life insurance in euros. Secondly, they
have developed unit-linked contracts in an attempt to limit the flows into euro-denominated
life insurance contracts. However, in the first case, by turning to more risky assets, which
potentially carry a positive risk premium, they are less likely to be able to guarantee the
capital (even if they maintain a liquidity ”cushion” as a cash reserve). All these factors
now pose a significant risk on the life insurance model, in its euro version. We address the
optimal portfolio allocation of the life insurance company among those classes of financial
assets, not only on theoretical ground, by applying ruin theory and stochastic process to
financial markets, but also from a statistical perspective involving simulations on real data.
We contribute to the study of the ruin models with investment by obtaining formulae for
the first two moments of the value of a life insurance company and then to find an optimal
asset allocation for euro-denominated funds.

The rest of the paper is organized as follows. In Section 2, we analyze the life insurance
business in a low-interest-rate environment and review the theoretical literature. In Section
3, we derive the explicit form of the first two moments of the value of a life insurance
company with two case studies depending upon whether there is a compound Poisson
process in the basic risk process, followed by an analysis. In Section 4, we find the optimal
asset allocation strategy under constraints and present a numerical illustration with real
data. We then examine, in Section 5, the sensitivity of our results, as well as their regulatory
implications. Finally, Section 6 concludes.

2. Literature Review and Background

The phenomenon of a persistent low-interest-rate environment leading to a significant re-
duction in contract remuneration has already started. If the 10-year French bond remains
negative for too long, it will force insurers to invest both collected savings and the proceeds
from the sale of maturing bonds into well-rated lower rates bonds. What is more, we notice
that the emergence of numerous old contracts will become a completely free reinvestment
in other financial products thanks to the tax exemption on the benefits after the holding
period of 8 years. Long-term interest rates are the valuation basis for determining premi-
ums, policy reserves, guaranteed rates of return, and profit-sharing. As capital market rates
approach the valuation interest rate, life insurers will have a problem: even if their existing
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portfolios are invested in assets that yield above the valuation rate, insurers immediately
lock in a loss with cash flow from new business reinvestment ([Holsboer, 2000]).

The fact is that the impact of low-interest-rate has been studied since the beginning
of this century. As remarked in [Holsboer, 2000]: a milestone was reached when the long-
term yield for the ten-year benchmark government bond dipped to under 4.00% for the
first time in 40 years in Europe. [Boubel and Séjourné, 2001] deal with the development
of European life insurance markets through diversification of life insurance products and
delivery networks. Since the mid-1980s, the decline in rates of return on traditional contracts
denominated in the national currency and invested in the bond markets caused by the
decline in long-term interest rates was noticeable in countries with an inflationary market,
which have led insurers to switch into other assets. This fall in long-term nominal rates
reflects a steady decline over more than two decades in the long-term risk-free real interest
rate, rather than a fall in expected inflation, which has remained broadly stable in [Bean
et al., 2015] until recently. [Berdin and Gründl, 2015] showed that a prolonged period of
low-interest rate would markedly affect the solvency situation of life insurers, leading to a
relatively high cumulative probability of default, especially for less capitalized companies.
This has become even more true since then. In a study of the secular determinants of the
world’s long-term real interest rate, [Rachel and Smith, 2015] attribute about two-thirds
of the decline in real-world rates since the 1980s to secular factors that determine the
desired saving and investment rates. [Sobrun and Turner, 2016] argue that recent estimates
of unobserved concepts, such as the theoretical policy rate, the natural rate, and the long-
term rate premium, suggest that the “new normal” world interest rate is lower than before.
[Gründl et al., 2016] investigate the extent to which changes in macroeconomic conditions,
market developments, and insurance regulation may affect the role of insurers in long-
term investment financing. They conclude that regulation should neither unduly favor nor
hinder long-term investment as such but place a priority on incentivizing prudent asset-
and-liability management with mechanisms that allow for a “true and fair view” of insurers’
risk exposures.

[Gollier, 2015] pointed out the possibility of the insurance crisis: should the interest rates
start to rise in the euro area, in particular rapidly, insurers would end up with a considerable
stock of bonds showing an unrealized loss. Policyholders would be drawn to other products
on the market that would be more attractive than today. Moreover, as mentioned above,
the long-standing policyholders should also potentially exercise their exit option when the
tax advantage is over after 8 years.

In a low-interest-rate environment, insurers have been changing their investment pol-
icy towards higher-paying investments by increasing the proportion of shares (at the cost
of raising additional capital), private bond investments, or even real estate in their in-
vestments, or by accepting more geographical diversification for example, even if this is
accompanied by greater risk-taking. The European Insurance and Occupational Pensions
Authority (EIOPA)2 investigated both a quantitative and qualitative section focusing on
the asset side of the balance sheet at a European level. Thirteen French groups participated
in this survey. Several trends are identified: a small decrease in the debt portfolio against a
small increase in other investments; a trend towards lower credit rating quality fixed income
securities with downgrades of a large number of sovereign and corporate bonds; a trend
towards more illiquid investments such as non-listed equity and loans excluding mortgages;

2Investment behavior report, EIOPA, November 2017
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the increased average maturity of the bond portfolio; the tendency to invest into new asset
classes such as infrastructure, mortgages, loans and real estate. Natixis Investment Man-
agers commissioned a global survey3 of 200 Chief Investment Officers (CIOs) at insurers
in Europe, North America, and Asia. The survey results reveal three key trends driving
investment strategy for insurance CIO teams: Three-quarters of insurers rank interest rates
as key portfolio risk. 89 % of insurers globally say regulations deter them from investing in
higher-risk assets. Two-thirds of insurers outsource at least some of their portfolio, mainly
to gain access to expertise.

It also shows challenges that the life insurance sector will have to solve in the coming
years from the holding rate of life insurance contracts by age and the population in France.
According to [Cazenave-lacrouts et al., 2018], the holding rate of life insurance contracts
increases with age: the holding rate of life insurance contracts by households aged 60 and
more (44.30%) is far more significant than those aged under 30 (23.70%) in France. Life
insurance is attractive because it not only allows holders to accumulate wealth during their
life, for example for retirement purposes, but it can also transmit it in succession under
favorable tax conditions. Both would explain why the holding rate increases with age.

Fig 2: Evolution of the population projections of France, from 1990 to 2070.

Source: INSEE – Population estimates

From the Population Projections in 2070 ([Blanpain and Buisson, 2016]) in Figure 2,
we notice that the proportion of older adults will increase gradually by 2070. Both the
retirement of many generations and the higher holding rate of life insurance contracts by
those generations indicate the higher probability of redemption of life insurance contracts
and more significant outflows from the asset portfolios of life insurance business by older
adults based on their needs, in case of financing their retirement.

3Insurance survey: Rates, liabilities, and regulation put CIOs between a rock and a hard place, Natixis
investment managers, November 2019
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Fig 3: Evolution of the premiums, withdrawals and net inflows of life insurance contracts
in France, from 1999 to 2018 (direct business, in billions of euros).

Source: FFA

When observing the economic activity of life insurers in France, the trend for benefits,
withdrawals, and claims paid has been increasing in the life insurance sector, along with
the decrease in net inflow (Figure 3). At the same time, the premiums remain at around
120 - 140 billion euros.

Firstly, we decompose the benefits, claims paid, and withdrawals to analyze the break-
down of withdrawals of life insurance contracts in France. It shows that the decrease in net
inflow since 2006 is due to the increase in redemptions, and mainly to the jumps in redemp-
tions during the periods of the 2007-08 financial crisis and 2011-12 public debt crisis, as
shown in Figure 4. Secondly, we focus on the net inflows from three different life insurance
contracts in Figure 5. The net inflows from the unit-linked contracts have been increasing
before the 2007-08 financial crisis and since 2012. This trend is the same as when the stock
market is bullish, where we show the stock index of the CAC 40 as an example in Figure
6. The gradual decline in the return on euro-denominated contracts, related to the fall in
long-term interest rates, was spreading throughout Europe. The excellent performance of
the stock markets allowed unit-linked products to present as an attractive alternative that
enabled investors to benefit at least partly (according to the nature of the contract) from
the rise in stock market prices while remaining within the attractive taxation framework
of life insurance. This phenomenon was noticed for the first time at the end of the 1990s,
when the inflow of unit-linked products exceeded the inflow of euro-denominated products
([Boubel and Séjourné, 2001]).
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Fig 4: Breakdown of withdrawals of life insurance contracts in France, from 2005 to 2018
(direct business, in billions of euros).

Source: FFA

Fig 5: Life insurance net inflow from euro-denominated, unit-linked and euro-growth con-
tracts in France, from 2005 to 2018 (direct business, in billions of euros).

Source: FFA

The net inflow from euro-denominated contracts has been decreasing since the early
2010s. A partial explanation lies in the issuance of euro-growth contracts in 2014. Since
the objective of euro-growth funds is to generate more efficient returns than those of euro-
denominated funds, without taking excessive risk in long-term (at least eight years), it



/ 8

is reasonable that euro-growth contracts absorb one part of the shares in the net inflows
from euro-denominated contracts. What is more, the approval of the Pact law 4 for the
transformation and growth of businesses, which modified the terms of investment in life
insurance contracts, provides for the possibility of transforming part or total of the existing
contracts into a euro-growth contract within the same insurer, while retaining the tax
precedence of the policyholders. This law will also potentially increase the net inflows into
euro-growth contracts in the future. However, these contracts remain largely unknown, and
a bigger part of the inflows is invested in traditional unit-linked contracts.

Fig 6: The CAC 40 index, historical data of monthly price.

Source: Bloomberg

Nevertheless, on the brighter side, life insurance remains the preferred financial invest-
ment of households after the passbook: 36.50% of metropolitan households own at least one
contract ([Cazenave-lacrouts et al., 2018]). Despite the significant drop in yields of euro-
denominated funds, some households still seem to favor the security of this investment
rather than its yield. And the portfolio management of life insurers remains then the big
question.

Next, we review the literature related to the ruin theory we apply to address the optimal
asset allocation problem of euro-denominated life insurance. The ruin models with invest-
ment income have a long history, going back to [Lundberg, 1903]. In Lundberg’s model, the
company does not earn any investment income on its capital. [Cramér, 1938] modeled the
value of an insurance company using a compound Poisson process with drift and estimated
the probability of ruin of insurance companies. In the first half of the 20th century, the
stochastic process theory was far less developed, and the first attempt that incorporates
investment incomes was undertaken by [Segerdahl, 1942] with the assumption that capital
earns interest at a fixed rate rf , which can be understood as the risk-free rate. Half a cen-

4In French, La Loi Pacte: ”Loi n. 2019-486 du 22 mai 2019 relative à la croissance et la transformation
des entreprises”
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tury later, with the inspiration from mathematical finance, [Paulsen, 1993] suggested that
capital is allowed to be invested in risky assets, with a risky remuneration R.

Several studies focused on the risk process and the ruin probability of the life insurance
company. [Harrison, 1977] considers a generalization of the classical model of collective risk
theory. He obtains a general upper bound for the probability of ruin, a general solution for
the case where the cumulative income process of an insurance company has no jumps. The
results show that if the income process is well approximated by Brownian motion with drift,
then the process of the asset is well approximated by a certain diffusion process, which he
calls compounding Brownian motion, and the probability of ruin is well approximated by
a corresponding first passage probability. [Delbaen and Haezendonck, 1987] give a general
description of the classical risk process when macro-economic factors such as interest and
inflation are taken into account, and they study the effects of factors on bounds on ruin
probabilities. The problem of ruin in a risk model when assets earn investment income is
treated in [Paulsen, 1993], [Paulsen, 1998], [Paulsen, 2008] and [Paulsen and Gjessing, 1997].
Their studies cover presentations of the relevant integro-differential equations, exact and
numerical solutions, asymptotic results, bounds on the ruin probability, and the possibility
of minimizing the ruin probability by investment and possibly reinsurance control. They
mainly focus on continuous-time models, but discrete-time models are also considered.
[Morales and Schoutens, 2003] present a risk model achieved by incorporating a Lévy process
when the aggregate claims and premium fluctuations evolve by jumps. They show how the
infinite activity feature of such a family of processes can be used to account for discrete
premium fluctuations as well as for semi-heavy tailed claims. [Vostrikova and Spielmann,
2020] study the ruin problem with investment where the business part X is a Lévy process,
and the return on investment R is a semi-martingale.

In recent years, several investigations on simulations and empirical analysis have been
developed, trying to find the optimal asset allocation for an insurance company. [Wang
et al., 2007] study the optimal investment problem for an insurer through the martin-
gale approach. When the insurer’s risk process is modeled by a Lévy process and the
security market is described by the standard Black-Scholes model, closed-form solutions
to the problems of mean-variance efficient investment and constant absolute risk aversion
(CARA) utility maximization are obtained. They analyze the effect of the claim process
on the mean-variance efficient investment using their explicit solutions. They find that the
mean-variance efficient strategies do depend on the claim process. [Brokate et al., 2008]
focus on asymptotic tail estimation and apply the numerical methods to find the distri-
bution tail. Determine the optimal investment by maximizing the expected wealth subject
to a risk bound given in terms of a Value-at-risk, measuring risk in terms of a high quan-
tile of an appropriate risk process. Their method shows higher accuracy when the risky
investment is not too small. [Huang and Lee, 2010] use a multi-asset model to investigate
the optimal asset allocation of life insurance reserves and obtain formulae for the first two
moments of the accumulated asset value. They provide a new perspective for solving both
single-period and multi-period asset allocation problems in application to life insurance
policies. [Yu et al., 2010] apply the simulation optimization approach to the multi-period
asset allocation problem of property-casualty insurers. They construct a simulation model
to simulate operations of a property-casualty insurer and develop multi-phase evolution
strategies (MPES) to be used with the simulation model to search for promising asset al-
locations for the insurer. They find that the re-allocation strategy resulting from MPES
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outperforms re-balancing strategies. Their simulation optimization approach to the asset
allocation decisions for better investment performance is also applicable to other financial
institutions, such as life insurance companies. [Fidan Neslihan et al., 2016] do in-sample
and out-of-sample simulations for portfolios of stocks from the Dow Jones, S&P 100, and
DAX indices to compare portfolio optimization with the Second-Order Stochastic Domi-
nance (SSD) constraints with mean-variance and minimum variance portfolio optimization.
Their results show a superior performance of portfolios with SSD constraints.

3. Modelization

To make the ideas of the life insurance business transparent, we introduce the risk process
employing two basic processes following the survey of [Paulsen, 2008], i.e.,
· a basic risk process X with X0 = 0,
· a return on investment generating process R with R0 = 0.

Suppose that the basic risk process of an insurance company can be described by X =
(Xt)t≥0 such that

Xt = aXt+ σXWt +

Nt∑
k=1

Zk. (3.1)

with aX 6= 0, σX 6= 0, and t ≥ 0, where W = (Wt)t≥0 is a standard Brownian Motion,
N = (Nt)t≥0 is a nonnegative integer-valued Poisson process with mean λ, and Zk =
(Zk)k∈N , a sequence of independent and identically distributed random variables with mean
E[Zk] = βZ and finite variance V ar(Zk) = σ2

Z . Suppose that Nt is independent of the
sequence (Zk)k∈N , W, N and (Zk)k∈N are mutually independent. In this modelization,
aX is the premium rate, λ is the number of withdrawals, βZ is the average sizes in each
withdrawal, σ2

Z is the variance of withdrawals, while σX represents fluctuations in premium
income and maybe also small withdrawals.

Before the mid-1990s, the life insurance business in France has been developing prosper-
ously and smoothly. Households have invested massively in euro-denominated funds. And
the withdrawals were not so numerous. In such situation the basic risk process (Xt)t≥0 is
given by

Xt = aXt+ σXWt.

The life insurance company invests the proportion (1 − γ) in a non-risky asset with an
interest rate of r > 0 and the proportion (0 < γ < 1) in a risky asset with a return of Rt,
so that the risk process (Yt)t≥0 of this company verifies: for t > 0:

dYt = dXt + (1− γ)Ytrdt+ γYtdRt, (3.2)

with Y0 = y, corresponding to the initial capital of an insurance company.
Suppose that the risky return R = (Rt)t≥0 corresponds to a Black-Scholes model: for

t > 0,

dRt = aRdt+ σRdBt,

with R0 = 0, where aR is a constant, describing the drift; σR > 0 is a constant, describing
the volatility; B = (Bt)t≥0 is a standard Brownian Motion independent of (Xt)t≥0.

Then, the return on investment generating process is
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R
(γ)
t = [γaR + (1− γ)r]t+ γσRBt.

To simplify the notations of the investment generating process, let

µγ = γaR + (1− γ)r, (3.3a)

σγ = γσR, (3.3b)

Then, we have

R
(γ)
t = µγt+ σγBt. (3.3c)

Therefore, (3.2) is equivalent to:

dYt = dXt + YtdR
(γ)
t . (3.4)

As known, the solution of (3.4) is given by [Paulsen, 1996] (Theorem 11.3):

Y
(γ)
t = E(R(γ))t

[
y +

∫ t
0

dXs
E(R(γ))s

]
,

where E(R(γ)) is Doléans-Dade’s exponential,

E(R(γ))t = exp

(
µγt+ σγBt −

1

2
σ2
γt

)
,

in the case when γ = 0,

Y
(0)
t = exp(rt)

[
y +

∫ t
0

dXs
exp(rs)

]
,

which means a completely risk-free investment.

3.1. Two case studies

We propose two case studies depending upon whether there is a compound Poisson process
in the basic risk process, X, to obtain the first two moments of the value of a life insurance
company.

Case 1. when both the basic risk process Xt and the return on investment generating

process R
(γ)
t of the insurance company are modeled by two independent Brownian Motions,

Xt = aXt+ σXWt,

and
R

(γ)
t = µγt+ σγBt;

Case 2. when the basic risk process Xt is modeled by the sum of a Brownian Motion

and a compound Poisson process, and the return on investment generating process R
(γ)
t of

the insurance company is modeled by a Brownian Motion,

Xt = aXt+ σXWt +

Nt∑
k=1

Zk,
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and
R

(γ)
t = µγt+ σγBt.

We give the formulae of the first two moments, E
[
Y

(γ)
t (y)

]
and E

{[
Y

(γ)
t (y)

]2}
, in Case

1 and Case 2, where the proofs of propositions are in Appendix A and Appendix B
respectively.

In Case 1 : we obtain the following results.
Proposition 1. For 0 < γ < 1 and t ≥ 0 :

E
[
Y

(γ)
t (y)

]
=

{
eµγt

(
y + aX

µγ

)
− aX

µγ
, if µγ 6= 0,

y + aXt, if µγ = 0.

Proposition 2. For 0 < γ < 1 and t ≥ 0,
when µγ > 0:

E
{[
Y

(γ)
t (y)

]2}
=y2e(2µγ+σ2

γ)t + 2aX

(
y +

aX
µγ

)
e(2µγ+σ2

γ)t − eµγt

µγ + σ2
γ

+

(
σ2
X −

2a2
X

µγ

)
e(2µγ+σ2

γ)t − 1

2µγ + σ2
γ

;

when µγ = 0:

E
{[
Y

(γ)
t (y)

]2}
= y2eσ

2
γt + 2aXy

eσ
2
γt − 1

σ2
γ

+ 2a2
X

eσ
2
γt − 1− σ2

γt

σ4
γ

+ σ2
X

eσ
2
γt − 1

σ2
γ

,

where µγ and σγ are defined in (3.3a) and (3.3b).
In Case 2 : we get the following formulas.

Proposition 3. For 0 < γ < 1 and t ≥ 0 :

E
[
Y

(γ)
t (y)

]
=

{
eµγt

(
y + aX+λβZ

µγ

)
− aX+λβZ

µγ
, if µγ 6= 0,

y + (aX + λβZ) t, if µγ = 0.

Proposition 4. For 0 < γ < 1 and t ≥ 0,
when µγ > 0:

E
{[
Y

(γ)
t (y)

]2}
=y2e(2µγ+σ2

γ)t + 2aλ,β

(
y +

aλ,β
µγ

)
e(2µγ+σ2

γ)t − eµγt

µγ + σ2
γ

+

(
σ2
λ,β −

2a2
λ,β

µγ

)
e(2µγ+σ2

γ)t − 1

2µγ + σ2
γ

;

when µγ = 0:

E
{[
Y

(γ)
t (y)

]2}
= y2eσ

2
γt + 2aλ,βy

eσ
2
γt − 1

σ2
γ

+ 2a2
λ,β

eσ
2
γt − 1− σ2

γt

σ4
γ

+ σ2
λ,β

eσ
2
γt − 1

σ2
γ

,
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where aλ,β = aX + λβZ , σ2
λ,β = σ2

X + λ
(
β2
Z + σ2

Z

)
, µγ and σγ are defined in (3.3a) and

(3.3b).
In addition, the variance of the income of the life insurance company can be calculated by:

V ar
[
Y

(γ)
t (y)

]
= E

{[
Y

(γ)
t (y)

]2}
− E

[
Y

(γ)
t (y)

]2
.

The obtained formulae enable the analysis of portfolio problems and a first approximation
of optimal investment strategies for life insurance companies.

3.2. Analysis

By calculating the first-order partial derivatives, we obtain the relationships between each
variable and the first two moments of the income of the life insurance company in both
cases, in Table 1 and Table 2, respectively. The impact of each variable on the expectation
of the value of a life insurance company is shown in Table 1. It shows that in Case 1, the
expected value of a life insurance company is positively related to the initial capital, the
premium rate, and the investment drift when the investment return is nonnegative. In Case
2, the basic risk process also has impacts on the expected value of a life insurance company.
When both the expected value of the number of claim events and the average size in claim
events are positive, there will be a positive impact on the expected value of a life insurance
company, indicating that there are net inflows into the life insurance business.

Table 1
The impact of each variable on the expected value of a life insurance company

Variables Case 1 Case 2

µγ 6= 0 µγ = 0 µγ 6= 0 µγ = 0

the initial capital, y positive positive positive positive
the premium rate, aX positive positive positive positive

fluctuations in premium income, σX none none none none
the investment return, µγ positive none positive none

the investment volatility, σγ none none none none
the expected value of the number of claim events, λ none none both are positive when βZ > 0

the average size in claim events, βZ none none positive positive
the variance of claim sizes, σZ none none none none

When the investment return is positive, the impact on the second moment of the value of
the life insurance company is determined by a mixture of the premium rate, the investment
return, the investment volatility, the expected value of the number of claim events, and the
average size in claim events. The complex impact of the premium rate on the second moment
can be explained as when the premium rate increases, the expectation of the income of the
insurance company increases, and the uncertainty of the second moment of the income of
the insurance company also increases. However, it is not clear whether the second moment
increases, decreases, or remain unchanged. The optimal premium rate may not be the case
when the premium rate is the highest. In other words, increasing the premium rate does
not necessarily lead to the optimal Sharpe ratio.

Compared with Case 1, the difference in Case 2 is that the compound Poisson process
also impacts the income of the life insurance company through the expected value of the
number of claimed events, the mean of claim sizes, and the variance of claim sizes.



/ 14

Table 2
The impact of each variable on the second moment of the value of a life insurance company

Variables Case 1 Case 2

µγ > 0 µγ = 0 µγ > 0 µγ = 0

the initial capital, y positive positive positive positive
the premium rate, aX complex positive complex positive

fluctuations in premium income, σX positive positive positive positive
the investment return, µγ complex none complex none

the investment volatility, σγ complex positive complex positive
the expected value of the number of claim events, λ none none complex positive

the average size in claim events, βZ none none complex positive
the variance of claim sizes, σZ none none positive positive

3.3. Modelization with multiple risky assets

Suppose that there are multiple risky assets in the investment. Let n ∈ N∗ the number of
risky assets modeled by the Brownian Motion with drifts:

R
(i)
t = a

(i)
R t+ σ

(i)
R B

(i)
t , 1 ≤ i ≤ n,

with dependent Brownian Motions
(
B

(i)
t

)
t≥0

.

We denote by C the covariance matrix of n-dimensional Brownian Motions
(−→
Bt

)
t≥0

,

−→
Bt =

(
B

(1)
t , B

(2)
t , ..., B

(n)
t

)T
,

C = (ci,j)1≤i≤n
1≤j≤n

=



c11, · · · , c1j , · · · , c1n
...

. . .
...

...
...

ci1,
..., cij ,

..., cin
...

...
...

. . .
...

cn1, · · · , cnj , · · · , cnn


,

with ci,i = V ar
(
B

(i)
1

)
=
(
σ(i)
)2

, ci,j = cov
(
B

(i)
1 , B

(j)
1

)
.

In this case Y
(γ)
t verifies the equation:

dY
(γ)
t = dXt + Y

(γ)
t (1− γ)rdt+ Y

(γ)
t

n∑
i=1

γidR
(i)
t , (3.5)

where γ = γ1 + γ2 + ...+ γn and (γi)1≤i≤n are the proportions of the investment in the i-th
risky asset respectively.

From the properties of Brownian Motions,
(∑n

i=1 γidR
(i)
t

)
t≥0

is a Brownian Motion with

the drift:

a
(γ)
R =

n∑
i=1

γia
(i)
R ,
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and the variation:(
σ

(γ)
R

)2

= 〈C−→γ −→γ 〉 =

n∑
i=1

n∑
j=1

γiγjci,j =

n∑
i=1

n∑
j=1

γiγjσ
(i)
R σ

(j)
R ρi,j , (3.6)

where −→γ = (γ1, γ2, ..., γn)
T

.
Then (3.5) is equivalent to:

dY
(γ)
t = dXt + Y

(γ)
t dR

(γ)
t ,

where
R

(γ)
t =

[
(1− γ)r + a

(γ)
R

]
t+ σ

(γ)
R Bt,

and (Bt)t≥0 is a new Brownian Motion obtained by linear combination of the previous
Brownian Motions B(i), 1 ≤ i ≤ n. More precisely,(

n∑
i=1

γiσ
(i)
R B

(i)
t

)
t≥0

L
=
(
σ

(γ)
R Bt

)
t≥0

.

To simplify the notations, let

µγ = (1− γ)r + a
(γ)
R , (3.7a)

σγ = σ
(γ)
R , (3.7b)

Then:
R

(γ)
t = µγt+ σγBt. (3.7c)

Finally, by the same reasoning as the proofs of Proposition 1 and Proposition 2 in Case 1
and the same reasoning as the proofs of Proposition 3 and Proposition 4 in Case 2, we can
get the expressions for the first two moments of the value of a life insurance company when
there are multiple risky assets. The expressions in the model with multiple risky assets are
the same as when there is one risky asset, except that µγ and σγ are defined in (3.7a) and
(3.7b), respectively.

4. Optimal asset allocation

4.1. Practical problem

In order to illustrate the portfolio optimization problem, we choose to consider the four
main categories of assets included in the French life insurance balance sheets : government
bonds, corporate bonds, stocks and real estate. The goal of the optimal asset allocation
is to maximize µγ subjected to the condition that the probability that the result of the
exercise at the end of the period T is less than saving capital must be less or equal to α,
i.e.,

P
(
Y

(γ)
T ≤ −c

)
≤ α,
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where c is a saving capital and α is the probability of insolvency, α = 1% or 5%.
We have

µγ = µ1γ1 + µ2γ2 + µ3γ3 + µ4γ4,

where µ1, µ2, µ3, µ4 are the returns for the assets number 1, 2, 3, 4, and γ1, γ2, γ3, γ4 are
the proportions of each asset, respectively,

4∑
i=1

γi = γ1 + γ2 + γ3 + γ4 ≤ 1,

γ1 ≥ 0, γ2 ≥ 0, γ3 ≥ 0, γ4 ≥ 0. From (3.6), we also have:

σ2
γ =

4∑
i=1

4∑
j=1

γiγjσiσjρi,j ,

where σ2
i , i = 1, 2, 3, 4, are the variations of assets and ρi,j are the correlation coefficients

between assets i and j, i, j ∈ {1, 2, 3, 4}.
The objective is to find:

max
γ∈J

E
(
Y

(γ)
t

)
,

subject to the condition

P
(
−Y (γ)

T ≥ c
)
≤ α,

where J =

{
(γ1, γ2, γ3, γ4)

∣∣∣∣ 4∑
i=1

γi ≤ 1, γi ≤ γ(i)
max

}
.

Since the calculation of this probability is very complicated, we use upper estimation of
this probability, namely

P
(
−Y (γ)

T ≥ c
)
≤

E
[(
Y

(γ)
T

)2
]

c2
.

We recall that the case with µγ > 0 and aX ≥ 0 is more common, so that up to now, we
consider this situation. Moreover, the initial capital, y, can be put into the saving capital.
We take the formulas corresponding to y = 0 and µγ > 0.
For Case 1, we get:

E
(
Y

(γ)
T

)
=
aX
µγ

(
eµγT − 1

)
,

E
[(
Y

(γ)
T

)2
]

=
2a2
X

µγ

e(2µγ+σ2
γ)T − eµγT

µγ + σ2
γ

+

(
σ2
X −

2a2
X

µγ

)
e(2µγ+σ2

γ)T − 1

2µγ + σ2
γ

.

If we consider Case 2, aX and σ2
X should be simply replaced by aX + λβZ and σ2

X +
λ(β2

Z +σ2
Z) with λ the intensity of the Poisson process and βZ , σ2

Z being the mean and the
variance of the independent and identically distributed random variance (Zk)k∈N . So, for
the maximization problem, we need to consider only the first case for the modeling of Xt
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because other cases can be obtained by changing the parameters.
We introduce the function

f(x) =
ex − 1

x

and

g(x) =
ex

x
.

Then, given c, α, T , aX , σ2
X , γ

(1)
max, γ

(2)
max, γ

(3)
max, γ

(4)
max and r, we solve numerically the

maximization problem to find
max
γ∈J

[aXT · f(µγT )] ,

subject to the condition:

2a2
XT

2 · g(µγT ) · f
[
(µγ + σ2

γ)T
]

+ (σ2
X −

2a2
X

µγ
)T · f

[
(2µγ + σ2

γ)T
]
≤ α · c2.

When we find
→
γ = (γ∗1 , γ

∗
2 , γ
∗
3 , γ
∗
4) which gives the optimal allocation of the maximiza-

tion and the corresponding µ∗ and σ2
∗, the maximum of the expectation will be equal to

aX
µ∗

(
eµ∗T − 1

)
, and the mean interest rate for the unit period of time will be equal to

1
T ln

[
aX
µ∗

(
eµ∗T − 1

)]
.

4.2. Numerical illustration

To limit the impact of both the market risks and the liquidity risk, the French Insurance
Code specifies certain constraints on the structure of the asset portfolio of life insurance
companies. The main limits of the composition of euro-denominated funds in terms of
investment in percentage are (maximum investment ratios by asset class):
· 100% for bonds and bond funds;
· 65% for equities and equity funds;
· 40% for real estate.

Then, we have γ
(1)
max = γ

(2)
max = 100%, γ

(3)
max = 65% and γ

(4)
max = 40%.

For the parameters in the basic risk process, we obtain a premium of 85.7 billion euros
and the redemption of 53.6 billion euros, from the ACPR 2018 Insurance Market Figures.

The datasets used for the return on investment generating process include the France
10-year Government Bond (1, government bond), the Bloomberg Barclays Euro Aggre-
gate Corporate Total Return Index Value Unhedged EU (2, corporate bond), the EURO
STOXX 50 Index (3, stock) and the Euronext IEIF REIT Europe Index (4, real estate)
from December 31, 2018, to December 31, 2019, obtained from Bloomberg terminal. The
government bond is the proxy for the risk-free asset since it is well rated by agencies - AA
for S&P and Fitch, and the corporate bond, stock and real estate are used as risky assets.
The expected return and volatility are approximated by the annualized average return and
standard deviation of the daily returns in the period, respectively.

The following set of parameters has been used in the numerical solution of the maxi-
mization problem. The basic risk process Xt:

aX = 85.7, and σX = 53.6.
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The return on investment generating process Rt:

µ1 = 0.1263%, µ2 = 6.2396%, µ3 = 24.7671% and µ4 = 29.0565%,

σ1 = 0.0199%, σ2 = 1.8270%, σ3 = 13.1638% and σ4 = 13.4955%,

(ρi,j)1≤i≤4
1≤j≤4

=


1 0.0935 0.0467 0.0109

0.0935 1 −0.0056 0.0251
0.0467 −0.0056 1 0.4669
0.0109 0.0251 0.4669 1

 .
We set the period, T = 1, the probability of insolvency, α = 0.01 and the saving capital,
c = 1050.

Given all the parameters above, we find the optimal allocation of the maximization,

→
γ
∗

= (0.0979, 0.8115, 0.0407, 0.0499),

and the corresponding µ∗ = 3.79% and σ2
∗ = 3.53%.

5. Sensitivity analysis, discussion and implications

The optimal asset allocations depend on the selection of a range of parameters. Then, we
examine the sensitivity of the optimal investment strategy to some parameters.

5.1. Sensitivity of the optimal asset allocation to different constraints

In Table 3, we show the optimal asset allocation for α = 0.0095, 0.01, and 0.0105. We
also explore the optimal asset allocation for c = 1000, 1050, and 1100 in Table 4. Both
the coefficient α and c can be viewed as the risk tolerance measure of the life insurance
company, such that as α or c increases, the insurer’s risk-averse attitude decreases, and the
investment strategy becomes more aggressive. Small variations in α and c would lead to
huge shifts in the portfolio.

Table 3
Optimal asset allocation of the portfolio under different probabilities of insolvency

α Government bonds Corporate bonds Stocks Real estate

0.0095 0.7172 0.2532 0.0139 0.0155
0.01 0.0979 0.8115 0.0407 0.0499

0.0105 0.0000 0.7140 0.1141 0.1719

5.2. Sensitivity of the optimal asset allocation to the parameters of the
premium rate

We investigate the sensitivity of the optimal asset allocation to the parameter, aX , the
premium rate in Table 5. The results show that as aX increases, the investment strategy
becomes more conservative. In other words, the investment will be more conservative to
meet the constraints when increasing the premium without enhancing the saving capital.
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Table 4
Optimal asset allocation of the portfolio under different saving capitals

c Government bonds Corporate bonds Stocks Real estate

1000 1.0000 0.0000 0.0000 0.0000
1050 0.0979 0.8115 0.0407 0.0499
1100 0.0000 0.5153 0.1882 0.2965

Table 5
Optimal asset allocation of the portfolio under different values of the premium rates

aX Government bonds Corporate bonds Stocks Real estate

80 0.0000 0.4981 0.1946 0.3073
85.7 0.0979 0.8115 0.0407 0.0499
90 0.9722 0.0193 0.0041 0.0044

5.3. Discussion and implications

1. The reason why we choose the value of 1050 for the saving capital, c, is to make the
calculation results of different cases in the sensitivity analysis comparable, reduce the oc-
currence of 0 proportion in the allocation.
2. The allocation of classic euro-denominated funds of French companies at the end of 2019
is 32.50% in government bonds, 47.50% in corporate bonds, 8.60% in stocks, and 7.20% in
real estate5. There is a large difference in the allocation of bonds when we compare this al-
location to the theoretical optimal allocation that we found. There are several explanations
for this. Firstly, our database includes four assets. In reality, there are thousands of assets
available for asset allocation by life insurers. There is a higher probability that the result of
our model will be affected by the performance of one asset. Secondly, our model looks for
asset allocation that maximizes the return on investment subject to the constraint. Among
the four assets, the performance of the corporate bond index best meets the requirements
of the model, 81.15% is allocated to the corporate bond index. Thirdly, in reality, the port-
folio is more stable and does not change much compared with the previous year. There are
neither transaction costs nor rebalancing costs in our model since we do not consider the
initial portfolio. Moreover, it is now in an environment of ever-decreasing interest rates, and
the historical interest rate of the government bonds is higher, which offers higher returns
for older bonds still held by the French life insurance companies. Then, the allocation ratio
to the government bond is higher in reality (32.50%) than in our model (9.79%).

Solvency II includes a solvency capital requirement (SCR) coverage ratio of more than
200% and a minimum capital requirement (MCR) coverage ratio of more than 550% under
life and mixed insurers, providing ample protection against the risks to which they are
exposed.
3. A minimal change in the probability of insolvency and the saving capital will make a
larger difference in the optimal asset allocation. The results shown are in line with the
requirements of the Solvency II framework.
4. Keeping other variables unchanged, only the increase in the net inflow of investable funds
following the increase in the premium rate will lead to a more conservative investment

5Newsletter 42: Composition moyenne des fonds en euros à fin 2019, Good Value for Money
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strategy to make the portfolio meet the optimal return-risk conditions. If the premium rate
rises, the corresponding increase in the saving capital will enable the portfolio to maintain
the original return-risk performance or even better performance.

6. Conclusion

In this paper, we study a portfolio optimization problem related to the management of
life insurance business – euro-denominated funds. In a persistently very low-interest-rates
environment, the euro-denominated life insurance business faces multiple risks: diminish-
ing returns on euro-denominated funds, increasing risk exposures in asset allocations, and
unpredicted dramatic redemptions of the contracts. We apply a risk model based on this
background.

Then, we obtain the expressions on the first two moments of the income of a life insurance
company with investments in two cases:
1. when both the basic risk process Xt and the return on investment generating process

R
(γ)
t of the insurance company are modeled by two independent Brownian Motions;

2. when the basic risk process Xt is modeled by the sum of a Brownian Motion and a

compound Poisson process, and the return on investment generating process R
(γ)
t of the

insurance company is modeled by a Brownian Motion.
By calculating the first-order partial derivatives, we show the relationships between each

variable and the first two moments of the income of a life insurance company in two cases.
We investigate the optimal asset allocation on the market basis with numerical methods.
By demonstrating one example of data in 2019, we conduct an application to one case
analysis, with the numerical illustration and the sensitivity analysis of this strategy.

The result verifies the assumptions and analysis of the modelization. The impact of each
variable on the optimal asset allocation is analyzed, which is in line with the requirements
of the Solvency II framework. The result also shows certain implications for the industry
regulation and the insurance business and investment business of life insurance companies.

We conclude that the optimal asset allocation of the investment of the life insurance
company depends on both the basic risk process Xt and the return on investment generating

process R
(γ)
t .
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Models in Business and Industry, 19(2):147–167, 2003. .



/ 22

J. Paulsen. Risk theory in a stochastic economic environment. Stochastic processes and
their applications, 46(2):327–361, 1993.

J. Paulsen. Stochastic calculus with applications to risk theory. Lecture notes, University
of Bergen and University of Copenhagen, 1996.

J. Paulsen. Ruin theory with compounding assets—a survey. Insurance: Mathematics and
Economics, 22(1):3–16, 1998.

J. Paulsen. Ruin models with investment income. Probability Surveys, 5:416–434, 2008.
J. Paulsen and H.K. Gjessing. Ruin theory with stochastic return on investments. Advances

in Applied Probability, 29(4):965––985, 1997.
L. Rachel and T. Smith. Secular drivers of the global real interest rate. Discussion Papers

1605, Centre for Macroeconomics (CFM), 2015.
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Appendix A: Case 1

A.1. Proof of Proposition 1

Proof. First, we calculate conditional expectation of Yt conditionally to E(R(γ))t = ht.
Namely, we show that:

E
[
Y

(γ)
t (y)

∣∣∣∣E (R(γ)
)

0≤s≤t
= (hs)0≤s≤t

]
= ht

(
y + aX

∫ t

0

ds

hs

)
. (A.1)

Since W and B are independent Brownian Motions, and hence, R(γ) and X are independent,

E
[
Y

(γ)
t (y)

∣∣∣∣E (R(γ)
)

0≤s≤t
= (hs)0≤s≤t

]
= ht

(
y + E

∫ t

0

dXs

hs

)
. (A.2)

Taking into account Case 1 :∫ t

0

dXs

hs
= aX

∫ t

0

ds

hs
+ σX

∫ t

0

dWs

hs
. (A.3)

We note that (
∫ t

0
dWs

hs
) is a local martingale, and by localisation procedure, we show that:

E
(∫ t

0

dWs

hs

)
= 0. (A.4)

From (A.2), (A.2) and (A.3) we get (A.1).
We know from the properties of conditional expectation that:

E
[
Y

(γ)
t (y)

]
= E

{
E
[
Y

(γ)
t (y)

∣∣∣∣E (R(γ)
)

0≤s≤t = (hs)0≤s≤t

]}
.

So, we have:

E
[
Y

(γ)
t (y)

]
= E

[
E(R(γ))t

(
y + aX

∫ t

0

ds

E(R(γ))s

)]
= y E

[
E(R(γ))t

]
+ aX E

[∫ t

0

E(R(γ))tds

E(R(γ))s

]
.

(A.5)

Now, for the first term on the right-hand part of (A.5)

E
[
E(R(γ))t

]
= E

[
exp

(
µγt+ σγBt −

1

2
σ2
γt

)]
= exp (µγt) , (A.6)

since E
[
exp

(
σγBt − 1

2σ
2
γ

)]
= 1.

For the second part of (A.5) we get:

E
[∫ t

0

E(R(γ))tds

E(R(γ))s

]
=E

{∫ t

0

exp

[
(µγ(t− s) + σγ(Bt −Bs)−

1

2
σ2
γ(t− s)

]}
.
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It is known that: Bt −Bs
L
= Bt−s, so that doing time change u = t− s we have:

E
[∫ t

0

E(R(γ))tds

E(R(γ))s

]
= E

[∫ t

0

exp

(
µγu+ σγBu −

1

2
σ2
γu

)
du

]
.

Using Fubini Theorem, we exchange the expectation and integration over [0, t] and since

E
[
exp

(
µγu+ σγBu −

1

2
σ2
γu

)]
= exp (µγu) ,

we get:

E
[∫ t

0

E(R(γ))tds

E(R(γ))s

]
=

∫ t

0

exp(µγu)du.

During financial crisis or even more extreme market conditions, for instance, when aR ≤
0 < r, there will be one allocation that µγ = γaR + (1− γ)r = 0. Then there should be two

expressions for E
[∫ t

0
E(R(γ))tds
E(R(γ))s

]
:

E
[∫ t

0

E(R(γ))tds

E(R(γ))s

]
=

 eµγu

µγ

∣∣∣∣t
0

= eµγt−1
µγ

, if µγ 6= 0,

t, if µγ = 0.

(A.7)

Finally, from (A.5), (A.6) and (A.7):

E
[
Y

(γ)
t (y)

]
=

{
eµγt

(
y + aX

µγ

)
− aX

µγ
, if µγ 6= 0,

y + aXt, if µγ = 0.
(A.8)

A.2. Proof of Proposition 2

Before proving Proposition 2, we propose and prove Lemma 1:
Lemma 1. Suppose that (gt)t≥0 is a deterministic continuous function verifying the integral
equation

gt = g0 + ft + k

∫ t

0

gsds, (A.9)

with continuous differentiable deterministic function (ft)t≥0. Then

gt = ekt
(
g0 +

∫ t

0

e−ksf
′

sds

)
. (A.10)

Proof. The relation in (A.9) is equivalent to:

g
′

t = f
′

t + kgt, g0 = 0. (A.11)

Differentiating (A.10) we get (A.11). And since the solution of the equation is unique, the
result claimed follows.
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Proof. To calculate E
{[
Y

(γ)
t (y)

]2}
, we use the Itô formula. To avoid the complicated

notations, we omit for a moment the index (γ). From (3.2), (3.3c), (3.4) and Case 1 it
follows that:

dYt = aXdt+ σXdWt + Ytµγdt+ YtσγdBt.

The Ito formula with the function f(x) = x2 gives:

Y 2
t = Y 2

0 + 2

∫ t

0

YsdYs +
1

2

∫ t

0

2d〈Y c〉s,

where Y c is the continuous martingale part of the process Y , and 〈Y c〉 is predictable
quadratic variation of Y c. Since Y 2

0 = y2 and (A.11) we get:

Y 2
t =y2 + 2aX

∫ t

0

Ysds+ 2σX

∫ t

0

YsdWs + 2µγ

∫ t

0

Y 2
s ds

+ 2σγ

∫ t

0

Y 2
s dBs + 〈Y c〉t.

(A.12)

Since 〈Y c〉t = 〈σX
∫ t

0
dWs + σγ

∫ t
0
YsdBs〉, with independent W and B, we get

〈Y c〉t = σ2
Xt+ σ2

γ

∫ t

0

Y 2
s ds. (A.13)

Let τn= inf {t ≥ 0 :| Yt |> n} with inf {∅} = +∞. Then
(∫ t∧τn

0
YsdWs

)
t≥0

and
(∫ t∧τn

0
Y 2
s dBs

)
t≥0

are local martingales. It implies that there exists a sequence of stopping times (sn)n≥1 going

to +∞ such that
(∫ t∧τn∧sn

0
YsdWs

)
t≥0

and
(∫ t∧τn∧sn

0
Y 2
s dBs

)
t≥0

are martingales.

We put τ
′

n = τn ∧ sn, then from (A.12) and (A.13):

Y 2
t∧τ ′n

=y2 + 2aX

∫ t∧τ
′
n

0

Ysds+ 2σX

∫ t∧τ
′
n

0

YsdWs + 2µγ

∫ t∧τ
′
n

0

Y 2
s ds

+ 2σγ

∫ t∧τ
′
n

0

Y 2
s dBs + σ2

X

(
t ∧ τ

′

n

)
+ σ2

γ

∫ t∧τ
′
n

0

Y 2
s ds.

(A.14)

We take mathematical expectation in (A.14), and since

(∫ t∧τ ′n
0

YsdWs

)
t≥0

and

(∫ t∧τ ′n
0

Y 2
s dBs

)
t≥0

are martingales, we get that:

E
[
Y 2
t∧τ ′n

]
=y2 + 2aX

∫ t∧τ
′
n

0

Ysds+ 2µγ

∫ t∧τ
′
n

0

Y 2
s ds

+ σ2
X

(
t ∧ τ

′

n

)
+ σ2

γ

∫ t∧τ
′
n

0

Y 2
s ds.

Since Ys ≥ 0, we can do limit passage lim
n→+∞

in each term in the right-hand side by

Lebesgue’s Monotone Convergence Theorem. We prove that
[
Y 2
t∧τ ′n

]
n∈N

is uniformly inte-

grable and we pass to the limit in the left-hand side.
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This gives using Fubini theorem that:

E
(
Y 2
t

)
= y2 + 2aX

∫ t

0

E (Ys) ds+ 2µγ

∫ t

0

E
(
Y 2
s

)
ds+ σ2

Xt+ σ2
γ

∫ t

0

E
(
Y 2
s

)
ds.

We get with gt = E
(
Y 2
t

)
, ft = 2aX

∫ t
0
E (Ys) ds+ σ2

Xt and k = 2µγ + σ2
γ , from Proposition

1 and Lemma 1 that:

E
(
Y 2
t

)
= e(2µγ+σ2

γ)t
{
y2 +

∫ t

0

e−(2µγ+σ2
γ)s
[
2aX E (Ys) + σ2

X

]
ds

}
. (A.15)

The integral part in the right-hand side of (A.15) is:∫ t

0

e−(2µγ+σ2
γ)s
[
2aX E (Ys) + σ2

X

]
ds

=

∫ t

0

e−(2µγ+σ2
γ)s
[
2aX

(
yeµγs + aX

eµγs − 1

µγ

)
+ σ2

X

]
ds (A.16)

=

∫ t

0

[
2aXye

−(µγ+σ2
γ)s +

2a2
X

µγ
e−(µγ+σ2

γ)s

+

(
σ2
X −

2a2
X

µγ

)
e−(2µγ+σ2

γ)s
]
ds.

To perform the integration in (A.16), it is necessary to consider: whether µγ = − 1
2σ

2
γ or

µγ = −σ2
γ .

When µγ 6= 0, µγ 6= − 1
2σ

2
γ and µγ 6= −σ2

γ , the integration in (A.16) is:∫ t

0

[
2aXye

−(µγ+σ2
γ)s +

2a2
X

µγ
e−(µγ+σ2

γ)s

+

(
σ2
X −

2a2
X

µγ

)
e−(2µγ+σ2

γ)s
]
ds

=

[
−2aXy

e−(µγ+σ2
γ)t

µγ + σ2
γ

∣∣∣∣t
0

]
+

[
−2a2

X

µγ

e−(µγ+σ2
γ)t

µγ + σ2
γ

∣∣∣∣t
0

]

+

[
−
(
σ2
X −

2a2
X

µγ

)
e−(2µγ+σ2

γ)t

2µγ + σ2
γ

∣∣∣∣t
0

]

=2aX

(
y +

aX
µγ

)
1− e−(µγ+σ2

γ)t

µγ + σ2
γ

+

(
σ2
X −

2a2
X

µγ

)
1− e−(2µγ+σ2

γ)t

2µγ + σ2
γ

.

This gives, when µγ 6= 0, µγ 6= − 1
2σ

2
γ and µγ 6= −σ2

γ , the following relation

E
(
Y 2
t

)
=e(2µγ+σ2

γ)t

[
y2 + 2aX

(
y +

aX
µγ

)
1− e−(µγ+σ2

γ)t

µγ + σ2
γ
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+

(
σ2
X −

2a2
X

µγ

)
1− e−(2µγ+σ2

γ)t

2µγ + σ2
γ

]
(A.17)

=y2e(2µγ+σ2
γ)t + 2aX

(
y +

aX
µγ

)
e(2µγ+σ2

γ)t − eµγt

µγ + σ2
γ

+

(
σ2
X −

2a2
X

µγ

)
e(2µγ+σ2

γ)t − 1

2µγ + σ2
γ

.

When µγ = − 1
2σ

2
γ , the integration in (A.16) is:∫ t

0

[(
2aXy +

2a2
X

µγ

)
e−

1
2σ

2
γs + σ2

X −
2a2
X

µγ

]
ds

=

[
−
(

2aXy +
2a2
X

µγ

)
e−

1
2σ

2
γt

1
2σ

2
γ

∣∣∣∣t
0

]
+

[(
σ2
X −

2a2
X

µγ

)
t

∣∣∣∣t
0

]

=4aX

(
y +

aX
µγ

)
1− e− 1

2σ
2
γt

σ2
γ

+

(
σ2
X −

2a2
X

µγ

)
t.

This gives, when µγ 6= − 1
2σ

2
γ , the following result

E
(
Y 2
t

)
=y2 + 4aX

(
y − 2aX

σ2
γ

)
1− e− 1

2σ
2
γt

σ2
γ

+

(
σ2
X +

4a2
X

σ2
γ

)
t.

(A.18)

When µγ = −σ2
γ , the integration in (A.16) is:∫ t

0

[
2aXy +

2a2
X

µγ
+

(
σ2
X −

2a2
X

µγ

)
eσ

2
γs

]
ds

=

[(
2aXy +

2a2
X

µγ

)
t

∣∣∣∣t
0

]
+

[(
σ2
X −

2a2
X

µγ

)
eσ

2
γt

σ2
γ

∣∣∣∣t
0

]

=2aX

(
y +

aX
µγ

)
t+

(
σ2
X −

2a2
X

µγ

)
eσ

2
γt − 1

σ2
γ

.

This gives, when µγ = −σ2
γ , the following formula

E
(
Y 2
t

)
=e−σ

2
γt

[
y2 + 2aX

(
y +

aX
µγ

)
t+

(
σ2
X −

2a2
X

µγ

)
eσ

2
γt − 1

σ2
γ

]
(A.19)

=y2e−σ
2
γt + 2aX

(
y − aX

σ2
γ

)
te−σ

2
γt +

(
σ2
X +

2a2
X

σ2
γ

)
1− e−σ

2
γt

σ2
γ

.

When µγ = 0, the integral part in the right-hand side of (A.15) is:∫ t

0

e−(2µγ+σ2
γ)s
[
2aX E (Ys) + σ2

X

]
ds
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=

∫ t

0

e−σ
2
γs
[
2aX (y + aXs) + σ2

X

]
ds

=

∫ t

0

(
2aXye

−σ2
γs + 2a2

Xse
−σ2

γs + σ2
Xe
−σ2

γs
)
ds

=− 2aXy
e−σ

2
γt

σ2
γ

∣∣∣∣t
0

− 2a2
X

e−σ
2
γt
(
σ2
γt+ 1

)
σ4
γ

∣∣∣∣t
0

− σ2
X

e−σ
2
γt

σ2
γ

∣∣∣∣t
0

=2aXy
1− e−σ

2
γt

σ2
γ

+ 2a2
X

1− e−σ
2
γt − σ2

γte
−σ2

γt

σ4
γ

+ σ2
X

1− e−σ
2
γt

σ2
γ

.

This gives, when µγ = 0:

E
(
Y 2
t

)
=eσ

2
γt

(
y2 + 2aXy

1− e−σ
2
γt

σ2
γ

+ 2a2
X

1− e−σ
2
γt − σ2

γte
−σ2

γt

σ4
γ

+σ2
X

1− e−σ
2
γt

σ2
γ

)
(A.20)

=y2eσ
2
γt + 2aXy

eσ
2
γt − 1

σ2
γ

+ 2a2
X

eσ
2
γt − 1− σ2

γt

σ4
γ

+ σ2
X

eσ
2
γt − 1

σ2
γ

.

Appendix B: Case 2

B.1. Proof of Proposition 3

Proof. First, we calculate conditional expectation of Yt conditionally to E(R(γ))t = ht.
Namely, we show that:

E
[
Y

(γ)
t (y)

∣∣∣∣E (R(γ)
)

0≤s≤t
= (hs)0≤s≤t

]
=ht

[
y + (aX + λβZ)

∫ t

0

ds

hs

]
.

(B.1)

Since W and B are independent Brownian Motions, W , N and (Zk)k∈N are independent,
and hence, R(γ) and X are independent,

E
[
Y

(γ)
t (y)

∣∣∣∣E (R(γ)
)

0≤s≤t
= (hs)0≤s≤t

]
= ht

(
y + E

∫ t

0

dXs

hs

)
. (B.2)

Taking into account Case 2 we have:

E
(∫ t

0

dXs

hs

)
= E

(
aX

∫ t

0

ds

hs

)
+ E

(
σX

∫ t

0

dWs

hs

)
+ E

(∫ t

0

dQs
hs

)
. (B.3)
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We note that (
∫ t

0
dWs

hs
) is a local martingale, and by localisation procedure, we show that:

E
(
σX

∫ t

0

dWs

hs

)
= 0, (B.4)

and that

E
(∫ t

0

dQs
hs

)
= λβZ

∫ t

0

ds

hs
. (B.5)

From the Case 1 and the relation in (B.1), we conclude substituting aX by ax +λβZ , then
the expectation in this case is:

E
[
Y

(γ)
t (y)

]
=

{
eµγt

(
y + aX+λβZ

µγ

)
− aX+λβZ

µγ
, if µγ 6= 0

y + (aX + λβZ) t, if µγ = 0.
(B.6)

B.2. Proof of Proposition 4

Proof. We omit (γ) for the simplicity of the notation.
We do the calculus using the Itô Formula:

f (Y (t))

= f (Y (0)) +

∫ t

0

f ′ (Y (s)) dY c(s) +
1

2

∫ t

0

f ′′ (Y (s)) d〈Y c, Y c〉s

+
∑

0<s≤t

[f (Y (s))− f (Y (s−))] ,

(B.7)

where Y c is continuous martingale part of Y . In our case,

dY ct = σXdWt + σγRYt−dBt.

The equation (B.7) in the differential form is:

dYt = dXt + Yt−dRt

= aXdt+ σXdWt + dQt + µγYt−dt+ σγYt−dBt,
(B.8)

The Ito formula with the function f(x) = x2 in integral form gives:

Y 2
t =y2 + 2aX

∫ t

0

Ysds+ 2σX

∫ t

0

YsdWs + 2µγ

∫ t

0

Y 2
s ds

+ 2σγ

∫ t

0

Y 2
s dBs + 〈Y c〉t +

∑
0<s≤t

[
Y 2(s)− Y 2(s−)

]
.

(B.9)

The last term in the right-side hand of (B.7) in our case is:∑
0<s≤t

[
Y 2(s)− Y 2(s−)

]
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=
∑

0<s≤t

[
(Y (s−) + ∆Ys)

2 − (Y (s−))
2
]

=
∑

0<s≤t

[
(2Y (s−) + ∆Qs) · (∆Qs)2

]
=
∑

0<s≤t

[
2Y (s−) ·∆Qs + (∆Qs)

2
]

= [Q,Q]t + 2

∫ t

0

Ys−dQs.

Moreover, 〈Y c〉t = 〈σX
∫ t

0
dWs + σγ

∫ t
0
YsdBs〉, with independent W and B, and it gives

〈Y c〉t = σ2
Xt+ σ2

γ

∫ t

0

Y 2
s ds. (B.10)

Let τn= inf {t ≥ 0 :| Yt |> n} with inf {∅} = +∞. Then
(∫ t∧τn

0
YsdWs

)
t≥0

and
(∫ t∧τn

0
Y 2
s dBs

)
t≥0

are local martingales. It implies that there exists a sequence of stopping times (sn)n≥1 going

to +∞ such that
(∫ t∧τn∧sn

0
YsdWs

)
t≥0

and
(∫ t∧τn∧sn

0
Y 2
s dBs

)
t≥0

are martingales.

We put τ
′

n = τn ∧ sn, then from (B.9) and (B.10):

Y 2
t∧τ ′n

=y2 + 2aX

∫ t∧τ
′
n

0

Ysds+ 2σX

∫ t∧τ
′
n

0

YsdWs + 2µγ

∫ t∧τ
′
n

0

Y 2
s ds

+ 2σγ

∫ t∧τ
′
n

0

Y 2
s dBs + σ2

X

(
t ∧ τ

′

n

)
+ σ2

γ

∫ t∧τ
′
n

0

Y 2
s ds

+ [Q,Q]t∧τ ′n + 2

∫ t∧τ
′
n

0

Ys−dQs.

(B.11)

We take mathematical expectation in (B.11), and since

(∫ t∧τ ′n
0

YsdWs

)
t≥0

and

(∫ t∧τ ′n
0

Y 2
s dBs

)
t≥0

are martingales, we get that:

E
[
Y 2
t∧τ ′n

]
=y2 + 2aX E

∫ t∧τ
′
n

0

Ysds+ 2µγ E
∫ t∧τ

′
n

0

Y 2
s ds+ σ2

X

(
t ∧ τ

′

n

)
(B.12)

+ σ2
γ E
∫ t∧τ

′
n

0

Y 2
s ds+ E [Q,Q]t∧τ ′n + 2E

∫ t∧τ
′
n

0

Ys−dQs.

Then we calculate

E [Q,Q]t = E
∫ t

0

∫
R
x2 dµQ(x) = E

∫ t

0

∫
R
x2 dνQ(x, t)
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= E
∫ t

0

∫
R
x2 dFZ(x)λds = V ar(Qt)

= λt
(
β2
Z + σ2

Z

)
.

Furthermore, the integral of a continuous stochastic process with respect to the compound
Poisson process,

2E
∫ t

0

Ys−dQs = 2E
∫ t

0

Ys−

∫
R
xFZ (dx)λds

= 2λβZ

∫ t

0

E (Ys) ds.

Since Ys ≥ 0, we can do limit passage, lim
n→+∞

, in each term in the right-hand side by

Lebesgue’s Monotone Convergence Theorem. We prove that
[
Y 2
t∧τ ′n

]
n∈N

is uniformly inte-

grable and we pass to the limit in the left-hand side.
This gives using Fubini Theorem that:

E
(
Y 2
t

)
= y2 + 2aX

∫ t

0

E (Ys) ds+ 2µγ

∫ t

0

E
(
Y 2
s

)
ds+ σ2

Xt+ σ2
γ

∫ t

0

E
(
Y 2
s

)
ds

+ λt
(
β2
Z + σ2

Z

)
+ 2λβZ

∫ t

0

E (Ys) ds.

We see that with

gt = E
(
Y 2
t

)
,

k = 2µγ + σ2
γ + 2λβZ , and

ft = 2aX
∫ t

0
E (Ys) ds+ σ2

Xt+ λt
(
β2
Z + σ2

Z

)
+ 2λβZ

∫ t
0
E (Ys),

the equations for E
{[
Y

(γ)
t (y)

]2}
can be obtained from Case 1, replacing aX by aX +λβZ

and σ2
X by σ2

X + λ(β2
Z + σ2

Z).
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