Longevity Risk and How to Manage it in Pension Plans

Professor David Blake Director Pensions Institute Cass Business School d.blake@city.ac.uk

June 2018

Agenda

- Longevity risk: What is it?
- Longevity risk: How to quantify it?
- Managing longevity risk using insurance solutions
- Managing longevity risk using capital market solutions
- Re-insurance sidecars: Introducing new investors
- A role for government: Issuing Longevity Bonds
- Longevity assets in a diversified portfolio
- □ Conclusion

Longevity risk: What is it?

What is longevity risk?

We systematically underestimate how long people are going to live:

Longevity is a slowly-developing trend risk

Danger of:

Individuals outliving their savings:

As baby boomers retire, decumulation and longevity risk become key issues

Pension plans must provide retirement income security for however long people live:

Plan sponsors risk having to divert resources away from dividend and investment programmes

(Broken limits to life expectancy – Oeppen & Vaupel)

The future

Will longevity continue to improve?

Recent improvements have been underestimated

Mortality now recognized as being a stochastic process

Alternative expert views

- 'Pessimists' suggest that life expectancy might level off or decline (Olshansky et al)
 Impact of obesity, poor diet, global warming etc.
- 'Optimists' suggest no natural limit to human life (Vaupel et al)
 - Supported by extrapolative methods
 - **Future** scientific advances?

Accuracy of official mortality assumptions: actual and projected period life expectancy at birth, UK males, 1966-2031

πPensions Institute

Individual underestimates of life expectancy by age

Source: O'Brian, Fenn, and Diacon, 2005, self-estimated life expectancy compared with GAD forecast life expectancy

Stochastic nature of mortality improvements

England and Wales: Males Mortality, Age 65

Mortality
 clearly
 declining

 But declines are volatile

ensions

Range of responses

- Accept longevity risk as legitimate business risk
- Share longevity risk:
 - e.g., via participating annuities with survival credits
- Manage longevity risk using insurance solutions:
 - Buy-outs and buy-ins

Manage longevity risk using capital market solutions:

Manage risk with longevity hedges

Securitization +

Life Market

Supply and demand in the longevity market

Longevity risk: How to quantify it? Analysis of causal factors underlying longevity

Causal factors underlying longevity

Gender

Geographical location

Social class

Income/wealth

Year of birth (cohort)

Life expectancy at age 65 in the UK/US

Source: J.P. Morgan LifeMetrics data

Male life expectancy at birth: by local authority, 2004-6

Social class

Life expectancy for men at 65 by Social Class, England and Wales

Source: Longitudinal Study, Office for National Statistics

Income/wealth

Males Period LE: Age 55

Modelling Socio-Economic Differences in the Mortality of Danish Males Using a New Affluence Index - Andrew J.G. Cairns, Malene Kallestrup-Lamb, Carsten P.T. Rosenskjold, David Blake and Kevin Dowd

Cohort effect: 1930 cohort

Mortality rates in England and Wales for key disease groups

Quantifying longevity risk

Variability in life expectancy

Expected distribution of deaths: male 65

ensions

Expected distribution of deaths: male 85

Source: 100% PNMA00 medium cohort 2007

Longevity risk is driven by three underlying risks

Outcome Probability, %

Life Expectancy

A Modelling Risk: Risk that probability distribution is incorrectly modelled due to a limited data set.

B Trend Risk: Risk that large unanticipated changes in socioeconomic environment or health care significantly improve longevity.

C Idiosyncratic Risk: Risk that mortality rates still vary from the expected outcome as a result of random chance.

Modelling Risk and Idiosyncratic (Random Variation) Risk are greater the smaller the number of scheme members and the greater the distribution of scheme benefits.

Mortality forecasting models

'Process-based' models

- Model process of dying or mortality improvement
 - E.g., Risk Management Solutions (RMS) Longevity Risk Model uses 'vitagion categories' or individual sources of mortality improvement:
 - Iifestyle trends including smoking prevalence
 - health environment
 - medical intervention
 - regenerative medicine, such as stem cell research, gene therapy and nanomedicine
 - retardation of ageing, including telomere shortening and caloric restriction

Mortality forecasting models

 'Causal' or 'explanatory' models
 Model causes of death using exogenous explanatory variables
 e.g. macro-economic variables or socio-economic indicators

'Extrapolative' projection models
 Purely data-driven
 Will only be reliable if the past trends continue:
 medical advances can invalidate extrapolative projections by changing the trend

Main extrapolative models

- Lee-Carter model:
 - No smoothness across ages or years
- P-spline model:
 - Smoothness across years and ages
- Cairns-Blake-Dowd (CBD) model:
 - Smoothness across ages in same year

Longevity fan chart for 65-year old male (CBD model)

Survivor fan chart for 65-year old male (CBD model)

Managing longevity risk using insurance solutions

Managing longevity risk using insurance solutions

Classified as 'customized indemnification solutions'

- since the insurer fully indemnifies the hedger against its specific risk exposure
- These solutions can also be thought of as 'at-themoney' hedges
 - since the hedge provider is responsible for any increase in the liability above the current best estimate assumption on a poundfor-pound basis
- Buy-out
- Buy-in
- Longevity insurance contract / insurance-based longevity swap

Swiss Re – Friends' Provident Longevity swap

- World's first publicly announced swap in April 2007
 - a pure longevity risk transfer
 - but structured as an insurance contract
- Friends Provident's £1.7bn book of 78,000 of pension annuity contracts written between July 2001
 – December 2006
- Swiss Re makes payments and assumes longevity risk
 - in exchange for undisclosed premium

Managing longevity risk using capital market solutions

Managing longevity risk using capital market solutions

- Small number of capital market securities
 have been successfully launched since 2006:
 - Iongevity-spread bond
 - Iongevity swap
 - □ *q*-forward
 - tail-risk protection (or longevity bull call spreads)
- Key feature of these is that most are index rather than customized solutions
- They provide hedges and help to securitize the risk

Swiss Re Kortis Bond

- Longevity-spread bond, December 2010
- Issuer: Swiss Re
- Issue: \$50m, 8 years
- Purpose: to hedge Swiss Re's own exposure to longevity risk
- Bond holders: exposed to risk of increase in spread between annualized mortality improvements in English & Welsh males aged 75-85 v US males aged 55-65

JPMorgan – Canada Life longevity swap

- World's first capital market longevity swap in July 2008
- Canada Life hedged £500m of its annuity book:
 - 125,000 lives
 - 40-year swap customized to insurer's longevity exposure
- Longevity risk fully transferred to investors:
 - Hedge funds and ILS funds
- JPM acts as intermediary and assumes counterparty credit risk

The first capital markets transaction involving a *q*-forward took place in January 2008 between buy-out company Lucida and J.P. Morgan

Illustration of q-forward settlement for various outcomes of the realized reference rate				
Reference rate	Fixed rate	Notional	Settlement	
(Realized rate)		(GBP)	(GBP)	
1.0000 %	1.2000 %	50,000,000	10,000,000	
1.1000 %	1.2000 %	50,000,000	5,000,000	
1.2000 %	1.2000 %	50,000,000	0	
1.3000 %	1.2000 %	50,000,000	-5,000,000	

Source: Coughlan *et al* (2007, Table 1): A positive (negative) settlement means the fixed-rate receiver receives (pays) the net settlement amount.

Portfolio of q-forward building blocks

Age 50-59	Age 60-69	Age 70-79	Age 80-89
Males	Males	Males	Males
Age 50-59	Age 60-69	Age 70-79	Age 80-89
Females	Females	Females	Females

Distribution of liability value in 2018: Before and after hedging

Risk reduction = 86%, Residual risk = 14%

Tail-risk protection (or longevity bull call spread)

- Five publicly announced deals involving tail risk protection:
 - Aegon with Deutsche Bank in 2012
 - Aegon with Société Générale in 2013
 - Delta Lloyd with RGA Re in 2014 and 2015
 - NN Life with Hannover Re in 2017
- Deep 'out-of-the-money' hedge

Distribution of Final Index Value and Potential for Capital Reduction

Bull call spread payoff to hedger

Cumulative Pension Risk Transfers by Product and Country, 2007-17

Re-insurance sidecars: Introducing new investors

Sidecar structure

RGA Re and RenaissanceRe set up Langhorne Re in 2018 to target in-force life and annuity business with pension funds and other life companies as third-party sidecar investors

πPensions Institute

A role for government: Issuing Longevity Bonds

Three key reasons why governments should issue Longevity Bonds

- Interest in ensuring an efficient annuity market
- Interest in ensuring an efficient capital market for longevity risk transfers
- Best placed to engage in intergenerational risk sharing:
 will earn longevity risk premium

Potential role for government in helping to hedge longevity risk

Tail risk Longevity Bond from age 90 with terminal payment at 100 to cover post-100 longevity risk

PAYMENT

Longevity Bond cash flows across ages and time

Longevity assets in a diversified portfolio

Efficient frontier with and without longevity swaps

Conclusion

Conclusion

- Longevity risk is real, underestimated and expensive
- It needs to be quantified and managed
- Tools have been developed to do both:
 Insurance solutions
 Buy-outs and buy-ins
 Capital market solutions
 - q-forwards and longevity swaps

Conclusion

- But insufficient capital in insurance/reinsurance industry to deal with global longevity risk:
 Estimated at \$60-80trn
- Capital markets more efficient than insurance industry in:
 - Reducing informational asymmetries
 - □ Facilitating price discovery

offices, etc

- The Life Market has risks that are uncorrelated with traditional bond and equity markets:
 - which should make it attractive to long-term investors such as SWFs, endowments, family

Richard Sandor's Seven Stages of Market Evolution

Number	Stage
1	Structural change – leading to a demand for capital
2	Development of uniform commodity/security standards
3	Introduction of legal instruments providing evidence of ownership
4	Development of informal spot and forward markets
5	Emergence of formal exchanges
6	Introduction of organized futures and options markets
7	Proliferation of over-the-counter (OTC) markets, deconstruction
Pensions	5

Thank you!

Longevity 14: Fourteenth International Longevity Risk and Capital Markets Solutions Conference 20-21 September 2018 Amsterdam http://longevity-risk.org